
Client-side Web Mining for Community Formation in
Peer-to-Peer Environments

Kun Liu, Kanishka Bhaduri, Kamalika Das and Phuong Nguyen and Hillol Kargupta
∗

Department of Computer Science and Electrical Engineering
University of Maryland Baltimore County
1000 Hilltop Circle, Baltimore, MD 21250

{kunliu1, kanishk1, kdas1, phuong3, hillol}@cs.umbc.edu

ABSTRACT
In this paper we present a framework for self-formation of
interests-based Peer-to-Peer communities using client-side
web browsing history. We propose an order statistics-based
algorithm to build communities with hierarchical structures.
We also carefully consider the privacy concerns of the peer
and adopt cryptographic protocols to measure similarity be-
tween peers without disclosing their personal profiles. We
have evaluated our algorithm using a distributed data min-
ing toolkit. The experimental results show that our frame-
work could efficiently build interests-based communities.

Keywords
Peer-to-Peer community, Order Statistics, Privacy Preserv-
ing Data Mining

1. INTRODUCTION
According to Maslow’s theory [17], social motive, which

drives people to seek contact with others and to build satis-
fying relations with them, is one of the most basic needs of
human beings. The tendency to have affiliations with oth-
ers is visible even in virtual environments such as the World
Wide Web. Many online communities like Google and Ya-
hoo groups provide the user a place to share knowledge,
and to request and offer services. These communities are
usually implemented as forums or mailing lists and under
certain central control. As the Web continues to grow in
both contents and the number of connected devices, Peer-
to-Peer (P2P) distributed computing is becoming increas-
ingly popular. Applications like Napster, KaZaA, BitTor-
rent, and SETI have demonstrated the true power of the
Internet. Peer-to-Peer technologies harness the CPUs and
storage devices of these PCs to produce huge data stores,
processing engines and communications systems. Each peer
in the P2P environment acts as an autonomous and inde-
pendent agent that shares knowledge by submitting queries

∗Hillol Kargupta is also affiliated with AGNIK, LLC, USA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WEBKDD’06, August 20, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-444-8 ...$5.00.

and by replying with relevant information. Dynamically ag-
gregating peers with similar interests could greatly enhance
the capability of each individual, facilitate knowledge shar-
ing, and reduce the network load. For example, a peer com-
munity allows the establishment of an abstract region of
specialization. When a peer needs some relevant resources,
the query could be propagated to the community members
first to avoid the flooding of the request, and to maximize
the quality of search results.

In this paper we address the problem of self-formation of
Peer-to-Peer communities using peer’s web browsing history.
We define a Peer-to-Peer community as a collection of nodes
in the network that share common interests. Traditional web
mining has spent lots of efforts on the web server side, e.g.
to analyze the server log. We propose a framework that uti-
lizes the client-side information, namely, the web browsing
cache, to model peers’ personal interests and to build Peer-
to-Peer communities. Compared with other related work,
our framework has the following specific features:

• It proposes an order statistics-based algorithm to quan-
tify the similarity between peers over the network.
This approach allows a peer to build a community with
hierarchical structure.

• It carefully considers the privacy concerns of the peer,
and adopts cryptographic protocols to measure simi-
larity between peers without disclosing their personal
profiles.

• Any technique that creates and represents a peer’s per-
sonal profile as a feature vector can be plugged into our
framework.

The remainder of this paper is organized as follows. Sec-
tion 2 offers an overview of the literature on Peer-to-Peer
community formation, Peer-to-Peer data mining, and pri-
vacy issues in Peer-to-Peer network. Section 3 presents some
basic features of our Peer-to-Peer community framework.
Section 4 and 5 address the community formation process.
Section 6 discusses the message complexity of some key steps
of the formation process. Section 7 studies the performance
of the proposed framework and provides the experimental
results. Finally, Section 8 concludes this paper with several
directions for future work.

2. RELATED WORK
This section presents a brief overview of the literature

on the formation of Peer-to-Peer communities and the their

privacy concerns. Due to the large volume of the literature
we do not attempt a comprehensive citation listing. Instead
we provide a sampling from a group of major categories.

2.1 Peer-to-Peer Communities
Generally speaking, the research on self-formation of Peer-

to-Peer communities can be grouped into four major cate-
gories: 1) ontology matching-based approach; 2) attribute
similarity-based approach; 3) trust-based approach; and 3)
link analysis-based approach. We introduce each of them as
follows.

Castano and Montanelli addressed the problem of forma-
tion of semantic Peer-to-Peer communities [4]. Each peer
is associated with an ontology which gives a semantically
rich representation of the interests that the peer exposes to
the network, in terms of concepts, properties and seman-
tic relations. Each peer interacts with others by submitting
discovery queries in order to identify the potential members
of an interest-based community, and by replying to incom-
ing queries whether it can join a community. A semantic
matchmaker is employed to check whether two peer share
the same interests. The matchmaker performs dynamic on-
tology matching by taking into account both linguistic and
contextual features of the concepts to be compared. The ad-
vantage of this approach is that peers do not have to agree
on the same predefined ontology, and therefore they have
lots of flexibility of describing their interests. However, the
gain of flexibility comes at the price of accuracy because of
the uncertainty of concepts. We refer the reader to [19] for a
brief survey of existing ontology matching approaches. The
other drawback of this approach is that a peer’s interests
are inevitably revealed, even to the peers that do not be-
long to the community, therefore the privacy of the peer is
compromised.

Khambatti et al. proposed a Peer-to-Peer community dis-
covery approach where each peer is associated with a set
of attributes that represent the interests of that peer [15].
These attributes are chosen from a controlled vocabulary
that each peer agrees with, which gets rid of the uncertainty
of the fuzzy ontology matching. Peers whose attributes have
non-empty intersection can be grouped together. A very ba-
sic privacy policy is applied such that a peer does not dis-
close attributes corresponding to its private interests. This
means that the smaller the number of claimed attributes,
the smaller the number of communities or community mem-
bers discovered by a peer. In this paper, we also assume
each peer has a set of attributes, which we call as profile
vector. The difference is that each interest in the profile
vector can be given a weight to show its importance. More-
over, we do not simply check the intersection of attributes,
instead, we quantitatively compute the similarity between
profile vectors (using scalar product), and we use an order
statistics-based algorithm that can tell how similar a pair
of peers are to each other in the whole network. Our pri-
vacy management scheme enables each peer to measure the
similarity with other peer without worrying about privacy
breach.

Trust-based community formation is usually discussed in
the scenario of file sharing and service providing. The nota-
tion “trust” is a measure used by a peer to evaluate other
peer’s capability of providing a good quality service or re-
source. This trust is based on information about the peer’s
past behavior. Once a peer finds trustworthy peers, it in-

vites them to join its community. We refer the reader to [27,
1] as a starting point on this topic. In this paper, we are
interested in forming a community based on peers’ interests
without considering the past interactions of peers.

There exists another area of research that focuses on the
link structure analysis of network to identify patterns of in-
teraction. For example, Scott identified the various cliques,
components and circles into which networks are formed [22].
Flake et al. described an approach to identify web commu-
nities [8]. Here a web community is a collection of web pages
in which each member page has more hyperlinks within the
community than outside it. Such communities help to cre-
ate improved search engines, to perform content filtering,
etc. The drawback of link analysis-based approach is that
it depends on the stable link structure of the network, and
therefore precludes a peer from being a member of more
than one community simultaneously.

2.2 Peer-to-Peer Data Mining
Peer-to-Peer data mining is a relatively new field. It pays

careful attention to the distributed resources of data, com-
puting, communication, and human factors in order to use
them in a near optimal fashion. To name a few, Wolff et
al. proposed algorithms for association rule mining [29] and
local L2 norm monitoring over P2P networks [28]. Datta
et al. proposed an algorithm for K-Means clustering over
large, dynamic networks [5].

2.3 Privacy in Peer-to-Peer Network
The objective of large scale distributed network is to max-

imize the availability and utilization of information. This
goal would be achieved if the free flow of information was
ensured, and if the owners of different data resources were
able to share them with each other. However, this is fre-
quently prohibited by legal obligations or by commercial
and personal concerns. Privacy, or lack of it, is becoming
an increasingly important issue in many distributed appli-
cation scenarios including file sharing, cooperative compu-
tation, etc. Previous research on privacy in Peer-to-Peer
network can be roughly classified into two categories: 1)
user anonymity; and 2) data privacy.

User anonymity aims at offering the users privacy protec-
tion by letting them hide their identities from the commu-
nicating peers or from malicious eavesdroppers. There are
many uses of anonymous P2P technology that help inter-
net users surf the web anonymously and shield their online
activities from corporate or government eyes. Anonymous
communication system is also used by government for intel-
ligence gathering and politically sensitive negotiations. Usu-
ally a special protocol for anonymous routing is applied in
the network (see e.g. [2]). The anonymity comes from the
idea that no one knows who requested the information as it
is difficult – if not impossible – to determine whether a user
requested the data for himself or simply requested the data
on behalf o somebody else. The end result is that everybody
on the network acts as a universal sender and universal re-
ceiver to maintain anonymity. There are many decentralized
anonymous and censorship-resistant P2P frameworks in the
market such as the Freenet [9] and the GNUnet [11], to name
a few.

The objective of protecting data privacy is to hide the
sensitive information owned by a peer from being disclosed
in a cooperative computation environment, where the rev-

elation of a peer’s identity is unavoidable. For example,
it may not be possible to hide the identity (e.g. IP, port
number, URI) of a peer in a Peer-to-Peer community since
without this information, peers may not be able to commu-
nicate with each other. To be more specific, the data privacy
problem in a large scale cooperative computation environ-
ment can be defined as follows. Assume that n participants
P = {P1, P2, . . . , Pn}, each owning a private input xi, wish
to jointly compute the output f(x1, x2, . . . , xn) of some com-
mon function f , without revealing anything but the output.
Privacy preserving data mining (PPDM) [26] strives to pro-
vide a solution to this problem. It aims to allow useful data
patterns to be extracted without compromising privacy. For
example, Gilburd et al. presented a privacy model called
k-TTP for large-scale distributed environment [10]. The in-
tuition is that at any time each participant can only learn a
combined statistics of a group of at least k participants, and
therefore any specific participant’s private input is hidden
among at least k−1 other participants’ input. In Section 5.3
we will revisit this problem and discuss how to compute the
scalar product of two private vectors owned by two peers.

3. FEATURES OF PEER-TO-PEER COM-
MUNITY

In this section, we present some features that characterize
the formation of our Peer-to-Peer communities.

3.1 Peer Profiles
A crucial issue in forming Peer-to-Peer communities is to

create peer profiles that accurately reflects a peer’s interests.
These interests can be either explicitly claimed by a peer,
or implicitly discovered from the peer’s behaviors. A peer’s
profile is usually represented by a keyword/concept vector.
Trajkova and Gauch proposed techniques to implicitly build
ontology-based user profiles by automatically monitoring the
user’s browsing habits [25]. The system classifies each web
page the user has visited into the most similar concept in a
predefined hierarchy of ontology. Each element of the user
profile vector corresponds to the weight or the number of
pages associated with that concept in the ontology. The
Open Directory Project concept hierarchy 1 was used as the
reference ontology. Figure 1 shows a sample ontology for
user profile. Other sources of information have also been
used in the literature to create profiles, such as using book-
marks [24], using queries and search results [23], etc. We
refer the reader to [25] for a brief overview on this topic.

We point out that any approach that represents a peer’s
profile in a feature vector can be used in our framework.
In this paper, we use the frequency of the web domains a
peer has visited during a period of time as the peer’s profile
vector. Each web domain can be viewed as an interest or
topic and hence the frequency of each entry of the vector
represents the weight of the interest for that topic. Detailed
explanation about data collection is given in Section 7. To
avoid the uncertainty of ontology matching, we expect all
peers to agree on the same ontology defined by a controlled
vocabulary. In this paper, this means that all peers agree
on a superset of web domain names.

3.2 Similarity Measurement

1Open Directory Project – http://dmoz.org/

Figure 1: A sample ontology for user profile.

The goal of community formation is to find peers sharing
similar interests. However, if we choose a similarity mea-
surement Ω, and simply setup a subjective threshold such
that peers with similarities greater than this threshold can
be grouped together, we can’t represent the essential char-
acteristics of a social community, namely, hierarchy. In a
social network, a person may have multi-level friends, where
the first level might be family members and closest friends,
the second level might be some colleagues who are not so fa-
miliar with. A person could also have indirect friends from
his/her friends’ social network. A Peer-to-Peer community
from one peer’s perspective should also have such kind of
hierarchical structure. That is, some peers share more in-
terests with this peer, and some less.

To achieve this goal, we propose an order statistics-based
approach (to be described later in Section 5.1) that enables
a peer to know how similar the other peer is to herself. In
other words, our statistical measurement guarantees that if
the similarity between peer Pi and Pj is above a threshold,
Pi can determine with confidence level q that Pj is among
the top (1 − p) quantile most similar peers of Pi’s. Here
the quantile, denoted by ξp with 0 < p < 1, of a continuous
random variable X is defined by Pr{x ≤ ξp} = p, e.g. ξ0.5

is called the median of the distribution. We use the term
“top (1 − p) quantile” to denote the area [ξp, ξ1), e.g. top
(1-0.9) quantile means the largest 10% of data. As a running
example, let us assume there are 5 peers {P1, P2, P3, P4, P5}
in the network, and the similarity measures between P1 and
all other peers are {1, 3, 2, 4}, respectively, where the higher
the value, the higher the similarity. If P1 knows the simi-
larity between her and P5 is 4, our approach will enable P1

to know with high confidence that P5 is among the top 25%
most similar peers of P1’s in the network, without comput-
ing all the similarity values.

Now we formally define a Peer-to-Peer community based
on our above discussion.

Definition 3.1. [(Ω, p, q)-P2P Community] A (Ω, p, q)-
P2P community from peer Pi’s view is a collection of peers
in the network, denoted by C, such that the similarity mea-

P i

P j

C

E

G

A

B

D

F
H I

com m u n ity in it ia tor

fir st level com m u n ity m em ber

secon d level com m u n ity m em ber

n ot com m u n ity m em ber

fir st level com m u n ity m em ber of th e com m u n ity in it ia t ed by Pj

Figure 2: Example of Peer-to-Peer communities.

sures Ω between Pi and all the members in C are among the
top (1− p) quantile of the population of similarity measures
between Pi and all the peers in the network, with confidence
level q.

Definition 3.2. [Extended (Ω, p, q)-P2P Community]
An extended (Ω, p, q)-P2P community from peer Pi’s view is
a collection of peers C, defined by Definition 3.1, as well
as all the peers from the extended P2P community of each
member in C.

These two definitions implicitly capture the hierarchical
characteristics of the community. When a peer finds a sim-
ilar buddy, she could compute the quantile value and deter-
mine which area this buddy belongs to. A peer could also
specify a p value and only invite those belonging to top (1−
p) quantile area to be her community members. The com-
munity could be expanded to include members from mem-
bers’s community. For example, in Figure 2, Peer A, Pj , H
are the first level members (with larger p) of community ini-
tiated by Pi. Peer C, F and G are the second level members
(with smaller p) of community. Note that Pj is also a ini-
tiator of another community, and it has E as its first level
community member. Peer A, Pj , H, E compose an extended
P2P community initiated by Pi.

In this paper, we use the scalar product between two pro-
file vectors to quantify the similarity between two peers.
Other similarity metrics such as Euclidean distance can also
be applied in our framework without any hurdle. Details
on how to determine the threshold for quantiles using order
statistics theory are given in Section 5.1.

3.3 Privacy Management
A major drawback of most existing community formation

approaches is that none of them take serious consideration to
protect a peer’s privacy. For example, a peer may not want
to reveal some of his interests, or the weights of his interests
in his profile vector. Privacy becomes an extremely impor-
tant issue especially when the profile is implicitly discovered
from the peer’s personal activities.

In our framework, we provide the peer with two-level pri-
vacy protection. The first level allows the peer to explicitly
filter out extremely private sensitive interests by assigning
zero weights to the corresponding concepts in the profile
vector. The second level protection relies on the notion of

cryptographic secure multi-party computation (SMC) [31].
Loosely speaking, SMC considers the problem of evaluating
a function of the private inputs from two or more parties,
such that no party learns anything beyond what can be im-
plied from the party’s own input and the designated output
of the function. We adopt private protocols that are proved
to be cryptographic secure such that any pair of peers can
compute the similarity of their interests without knowing
each other’s actual profile vector. Details about the private
computation are given in Section 5.3.

We need to note that no protocols can build a similar
interest-based community without revealing the information
that these peers share the same interests. A high simi-
larity value between two peers tells them they have a lot
in common, and their profile vectors are close. Neverthe-
less, SMC-based protocols can guarantee that neither party
would know the other’s actual input, namely, the actual pro-
file vector. Moreover, if the similarity value is low, no signifi-
cant information about the other peer’s interest is disclosed.

4. COMMUNITY FORMATION PROCESS
In this section, we address the Peer-to-Peer community

formation process under the assumptions that: 1) each peer
can be a member of multiple virtual communities; 2) peers
interact with each other by submitting or replying queries
to determine the potential members of a given community;
and 3) there is no superpeer as a centralized authority.

The Peer-to-Peer community emerges as a peer, Pi, called
community initiator, invokes a community discovery process
which consists of the following tasks: sample size computa-
tion, quantiles estimation, member identification, member
notification and acceptance, and community expansion.

• Sample Size Computation: The initiator Pi first
selects a confidence level q and the order of population
quantile p it would tolerate. Based on the algorithm
described in Section 5.1, the initiator calculates the
number of samples required to compute the threshold
such that any peers that have similarity values with Pi

greater than this threshold are among the top (1 − p)
quantile most similar peers of Pi’s. Let us denote the
sample size as N .

• Quantiles Estimation: Given the sample size N ,
the initiator invokes N random walks using the pro-
tocols described in Section 5.2 to choose independent
sample peers in the network. Whenever a new peer
Pj is chosen, it replies to Pi with its address and port
number, and builds an end-to-end connection with Pi.
Then Pi computes the scalar product of its profile vec-
tor and Pj ’s profile vector using the private scalar
product protocol described in Section 5.3. This pri-
vate protocol guarantees that neither Pi nor Pj could
know the other party’s profile. After Pi collects all
the N scalar products, it finds the largest one as the
threshold for quantiles of order p.

• Member Identification: The initiator Pi com-
poses a discovery message containing its address and
port number, as well as a time-to-live (TTL) parame-
ter defining the maximum number of hops allowed for
the discovery propagation. Then the discovery mes-
sage is sent to all Pi neighbors. When a peer Pj re-
ceives this message, it replies to Pi with its address and

port number. Pi then invokes a private scalar prod-
uct computation (to be described in Section 5.3) to
get the similarity value. Independently from the sim-
ilarity computation and if TTL ≥ 0, Pj forwards the
discovery message to all its neighbors, except for the
peer from which the message has been received. Each
peer discards duplicate copies of the same discovery
message possibly received.

• Member Invitation and Acceptance: The ini-
tiator Pi evaluates the quality of the discovered peers
by comparing the similarity values with its threshold.
If the similarity is above the threshold, Pi sends an
invitation message to that peer. If the similarity is
below the threshold, Pi still could analyze, with the
same confidence level, the order of quantile that the
peer belongs to; but note that this order will be lower
than the preset p. Given this information, Pi can de-
cide whether to send an invitation to a peer with less
similarity. For the sake of simplicity, in our exper-
iments, Pi will not send invitations in this circum-
stance. Once a peer Pj receives an invitation message,
it decides whether to accept it or not by replying an ac-
ceptance message. Receiving the acceptance message,
Pi records Pj in its local cache.

• Community Expansion: When a peer Pj accepts
the invitation, it replies to the initiator an acceptance
message, as well as with the member lists in its local
cache. These members are from the P2P community
or extended P2P community initiated by Pj . As a
reward, the initiator sends the current member list in
its local cache to Pj . In this way, each peer has an
extended Peer-to-Peer community.

Note that a given peer Pi may need to contact another
peer Pj in two cases – (1) discover its community, and (2)
answer to a query involving Pj . In our framework, if Pi

contacts Pj and does not get a reply in either of the two
cases (in a reasonable amount of time), Pi assumes that Pj

has left the network and does not involve Pj in any further
computation.

5. BUILDING BLOCKS
This section elaborates on some building blocks that are

necessary to complete the Peer-to-Peer community forma-
tion process.

5.1 Distribution-Free Confidence Interval for
Quantiles

Given x, a feature vector, and Y, a set of other feature
vectors, we want to find out how similar x and a y ∈ Y are
to each other in comparison with the similarities of x and
other ys in Y. A trivial approach to this problem would be
to collect the entire set of Y and compare all the scalar prod-
ucts of x and Y. This simple approach, however, does not
work in a large-scale distributed P2P environment because
the network state is not stable with frequent nodes arrivals
and departures, and the overhead of communication would
be extremely high. Theories from order statistics, however,
could relieve us from this burden by considering only a small
set of samples from Y and producing a solution with prob-
abilistic performance guarantees. The following part of this
section discusses this possibility.

Let X be a continuous random variable with a strictly
increasing cumulative density function (CDF) FX(x). Let
ξp be the population quantile of order p, i.e. FX(ξp) =
Pr{x ≤ ξp} = p. Suppose we take N independent samples
from the given population X and write the ordered samples
as x1 < x2 < · · · < xN . We are interested in computing the
value of N that guarantees

Pr{xN > ξp} > q.

Since

Pr{xN > ξp} = 1 − Pr{xN ≤ ξp}

= 1 − Pr{all the N samples ≤ ξp}

= 1 − pN ,

we have

1 − pN > q ⇒ N ≥

⌈

log(1 − q)

log(p)

⌉

. (1)

For example, for q = 0.95 and p = 0.80, the value of N
obtained from the above expression is 14. That is, if we took
14 independent samples from any distribution, we can be
95% confident that 80% of the population would below the
largest order statistic x14. In other words, any sample with
value greater or equal to x14 would be in the top 20 quantile
of the population with 95% confidence. The smaller the p is,
the smaller the N , e.g. when p = 0.70, N = 9. Therefore,
given 14 samples, we can also determine the threshold for
any quantile of order less than 0.80. Recall in the community
formation process, if the initiator Pi finds a peer Pj with
similarity value less the threshold, the initiator cannot say
Pj is among the top 1 − p quantile most similar peers, but
the initiator can still find out a smaller p′ < p and determine
with the same confidence level that Pj is among the top 1−p′

quantile most similar peers. For detailed treatment of order
statistics, we refer the reader to David’s book [6].

When X is discrete, the equation FX(x) = p does not
have a unique solution. However, ξp can still be defined by
Pr{x < ξp} ≤ p ≤ Pr{x ≤ ξp}. This gives ξp uniquely
unless FX(ξp) equals p, in which case ξp again lies in an in-
terval. It can be shown that in this case, Pr{xN < ξp} ≤
Ip(N, 1) = pN , where Ip(N, 1) is the incomplete beta func-
tion. Therefore, in the discrete scenario, we have

Pr{xN ≥ ξp} = 1 − Pr{xN < ξp}

≥ 1 − pN > q.

This does not change the conclusion from Eq. 1.

5.2 Random Sampling
Random sampling in the networks is a prerequisite to the

estimation of population quantile. It can be performed by
modeling the network as an undirected graph with transi-
tion probability on each edge, and defining a corresponding
Markov chain. Random walks of prescribed length on this
graph produce a stationary state probability vector and the
corresponding random sample. The simplest random walk
algorithm chooses an outgoing edge at every node with equal
probability, e.g. if a node has degree five, each of the edges
is traversed with a probability 0.2. However, it can be shown
that this approach does not yield a uniform sample of the
network unless the degrees of all nodes are equal [16]. Since
typical large-scale Peer-to-Peer network tends to have non-

uniform degree distribution, this approach will generate a
biased sample in most practical scenarios.

Fortunately, the elegant Metropolis-Hastings algorithm
[18, 13] implies a simple way to modify the transition prob-
ability so that it leads to a uniform stationary state dis-
tribution, and therefore results in uniform sample. In this
paper, we implement an adaptation of this classical algo-
rithm. The work in [3] proposed a more efficient random
walk algorithm, the Random Weight Distribution (RWD)
algorithm, that allows uniform sampling while minimizing
the length of the walk. We will experiment with that al-
gorithm in our future work. Next we briefly introduce the
Metropolis-Hastings algorithm for random walk.

Let G(V, E) be a connected undirected graph with |V | = n
nodes and |E| = m edges. Let di denote the degree of a node
i, 1 ≤ i ≤ n. The set of neighbors of node i is given by Ψ(i)
where ∀j ∈ Ψ(i), edge (i, j) ∈ E. Let P = {pij} represent
the n × n transition probability matrix, where pij is the
probability of walking from node i to node j in one message
hop. 0 ≤ pij ≤ 1 and

∑

j pij = 1. Protocol 5.2.1 gives the
basic algorithm.

Protocol 5.2.1 Metropolis-Hastings Random Walk

1: FOR each node i, 1 ≤ i ≤ n
2: IF receives a query q
3: Replies with di

4: IF receives a random walk message
5: IF TTL == 0
6: Terminates the walk
7: ELSE
8: TTL = TTL - 1
9: Sends out a query q to its neighbors Ψ(i)

10: IF receives all the replies from its Ψ(i)
11: Modifies transition probability pij as follows:

12: pij =

1/ max(di, dj) if i 6= j and j ∈ Ψ(i)
1 −

∑

k∈Ψ(i) pik if i = j

0 otherwise
13: Walk to next node with probability pij .

This algorithm generates a symmetric transition proba-
bility matrix and is proved to produce uniform sampling
via random walk [3]. As stated in [16], the length of ran-
dom walk necessary to reach to stationary state has order
O(log n). Empirical results show that when the length of
walk is 10 × log n, this algorithm converges to uniform dis-
tribution. The network size n could be estimated using the
localized estimation scheme proposed in [14]. Figure 3 shows
the probability of selection using the Metropolis-Hastings al-
gorithm over a simulated network with 5000 nodes. As can
be easily seen, the probability of selection is almost uniform
even for varying degree distribution. The longer the simula-
tion runs, the clearer the curve shows a uniform distribution.

To implement a random walk, the initiator sends out a
message contains a time-to-live (TTL) parameter that indi-
cates the length of the walk. Whenever a node receives the
message, it checks the TTL parameter. If TTL is 0, then
the walk terminates; otherwise, this node decreases TTL by
1 and forwards the message to the next node based on the
transition probability matrix.

5.3 Private Scalar Product Computation
Private scalar product computation serves as an impor-

tant building block for privacy preserving data mining [26].

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4x 10
−3

Node Degree

P
ro

ba
bi

lit
y

of
 S

el
ec

tio
n

Figure 3: Selection probability in a simulated net-
work with 5000 nodes (nodes arranged by their de-
grees).

It considers the problem of computing the scalar product of
two vectors owned by two different parties, respectively, so
that neither party should learn anything beyond what is im-
plied by the party’s own vector and the output of the compu-
tation. Here the output for a party is either the scalar prod-
uct or nothing, depending on what the party is supposed to
learn. Many private scalar product protocols have been pro-
posed in the literature. Generally speaking, these protocols
can be classified into two categories: 1) cryptosystem-based
approaches, which offer strong privacy protection, but in-
cur high communication and computational cost (e.g. [30]);
and 2) data perturbation-based approaches, which provide
weaker privacy protection but allow more efficient solutions
for more complicated data mining tasks (e.g. [7]). We refer
the reader to [12] for an overview on this topic.

In this paper, we adopt the protocol proposed in [12] for
the private similarity computation. This protocol is proved
to be private in a strong cryptographic sense. To be more
specific, no probabilistic polynomial time algorithm substi-
tuting one party can obtain a non-negligible amount of infor-
mation about the other party’s private input, except what
can be deduced from the input and output of this party.
Protocol 5.3.1 describes the basic procedures.

Protocol 5.3.1 Private Scalar Product

Private Input of Alice: Vector x = (x1, . . . , xd) ∈ Z
d
µ

Private Input of Bob: Vector y = (y1, . . . , yd) ∈ Z
d
µ

Output of Alice: x · y mod µ
1: Alice generates a private and public key pair (sk, pk),

and sends pk to Bob.
2: For each i, i = 1, . . . d, Alice generates a random number

ri ∈ Zµ, and sends ci = Epk(xi, ri) to Bob.

3: Bob computes w =
∏d

i=1 cyi

i mod µ2 and sends w back
to Alice.

4: Alice computes x · y mod µ = Dsk(w).

To understand this protocol, let us first take a brief re-
view of public-key cryptosystem. A public-key cryptosystem
P(G, E, D) is a collection of probabilistic polynomial time
algorithms for key generation, encryption and decryption.
The key generation algorithm G produces a private key sk
and public key pk with specified key size. Anybody can en-
crypt a message with the public key, but only the holder

of a private key can actually decrypt the message and read
it. The encryption algorithm E take as an input a plaintext
m, a random value r and a public key pk and outputs the
corresponding ciphertext Epk(m, r). The decryption algo-
rithm D takes as an input a ciphertext c and a private key
sk (corresponding to the public key pk) and outputs a plain-
text Dsk(c). It is required that Dsk(Epk(m,r)) = m. The
plaintext is usually assumed to be from Zµ, 2 where µ is the
product of two large primes. A public-key cryptosystem is
homomorphic when

∀m1, m2, r1, r2 ∈ Zµ,

Dsk(Epk(m1, r1)Esk(m2, r2) mod µ2) = m1 + m2 mod µ;

Dsk(Epk(m1, r1)
m2 mod µ2) = m1m2 mod µ;

Dsk(Epk(m2, r2)
m1 mod µ2) = m1m2 mod µ.

This feature allows a party to add or multiply plaintexts by
doing simple computations with ciphertexts, without hav-
ing the secret key. That is why Bob could compute an
encrypted scalar product without knowing Alice’s private
inputs in Step 3 of the above protocols.

In our implementation, we use the Paillier cryptosystem
[20] for public-key cryptography. Both encryption and de-
cryption require modular exponentiations and modular mul-
tiplications of large numbers. The bit complexity of these
basic operations in Zµ is O(|µ|3), where |µ| is the size of
the public key in bits. In Protocol 5.3.1, Alice performs k
encryptions and one decryption; and Bob does not perform
any cryptographic operations. Therefore a great amount
of computation is attributable to Alice, which becomes the
bottleneck of the whole process. However, in our scenario,
this protocol can be optimized since each feature vector con-
tains lots of 0’s because the peer has never visited the cor-
responding web sites. Thus, each peer can pre-compute a
large table of random encryptions of 0’s (each encryption
uses different r and therefore produces different ciphertext
for 0). Then every encryption of 0 simply corresponds to
fetching an element from the table, which can be very fast.
The communication overhead of this protocol is 2|µ|/|m|,
where |m| is the size of the original plaintext in bits.

6. MESSAGE COMPLEXITY
This section discusses the message complexity of some key

steps of our community formation process.
Random walk to fetch samples: Let the size of the
network be n, the number of samples necessary be N (refer
to Equation 1) and the length of a single random walk be λ.
The community initiator needs to launch N parallel random
walks. Each random walk message needs to carry a TTL
token (which is initially set to the length of the walk), the IP
address and port number of the initiator. If each of them are
represented by a 32-bit integer, the total message complexity
is 32 × 3 × N × λ bits.
Reply to initiator: Once a peer receives the TTL with
value 0, it needs to send its IP address and port number back
to the initiator node for doing the private scalar product
computation. Since there are N samples to be collected,
there are N such peers. The message complexity in this
step will be 32 × 2 × N bits.

2The integers modulo µ, denoted Zµ, is the set of (equiv-
alence classes of) integers {0, 1, . . . , µ − 1}. Addition, sub-
traction, and multiplication in Zµ are performed modulo µ.

Figure 4: Snapshot of a peer’s profile.

Private scalar product computation: Alice encrypts
each element of her vector with a public key of size |µ| bits.
The size of each ciphertext is 2 × |µ| bits. Alice then sends
the entire encrypted vector to the Bob for computation. The
total message payload for a vector of dimension d is there-
fore 2 × |µ| × d. After that Bob sends the encrypted scalar
product (2×|µ| bits) back to Alice. Hence the total message
complexity for N samples is 2 × |µ| × (d + 1) × N bits.

Message complexity for member identification and invita-
tion can be derived in a similar way using the above results.
We omit the analysis due to the space constraints.

7. EXPERIMENTS
In this section, we study the performance of the proposed

framework for Peer-to-Peer community formation.

7.1 Data Preparation
We use the web domains a peer has browsed to create the

profile vector. Each element of the vector corresponds to
the frequency that the domain has been visited by the peer
during a period of time. The data was collected from the
Internet Explorer (IE) history files of 5 volunteers from the
DIADIC Research Lab at UMBC and 10 volunteers from
the DSP Lab at Johns Hopkins University. There are in
total 1387 KB of data accounting for 97050 browsing history
records in our data set, and 722 unique web domains. We
have used Web Historian 1.2 to collect the data. These
records are randomly split and distributed to peers in our
network simulator so that each peer can compute its own
profile vector. Our simulations were done on hundreds of
peers using a simulator (described in Section 7.2) and the
data collected from these two universities. As we have stated
previously, we assume all the peers agree on the same profile
ontology, i.e. the same set of domain names, and therefore,
all the profile vectors have the same size - 722. Figure 4
shows a snapshot of a peer’s profile.

7.2 Network Topology and Simulator
Our network topology was generated using the BarbashiAl-

bert Model from BRITE 3, a universal topology generator.
We have chosen the BA model since it is considered as a
reasonable model for the internet. Simply speaking, in this
model, the probability of two nodes (i and j) being con-

nected is given by P (i, j) = αe−d(i,j)/βL, where 0 < α, β < 1
(fixed at 0.15 and 0.2 respectively in our experiments), d(i, j)

3BRITE - http://www.cs.bu.edu/brite/

is the Euclidean distance from node i to node j, and L is the
maximum distance between any two nodes. Power-law ran-
dom graph is often used in the literature to model large non-
uniform network topologies. It is believe that P2P networks
conform to such power law topologies [21]. We use the Dis-
tributed Data Mining Toolkit (DDMT) 4 developed by the
DIADIC research lab at UMBC to simulate the distributed
computing environment. This toolkit is build upon LEAP
(Light Extensible Agent Platform) 5, which itself is an ex-
tension of JADE (Java Agent DEvelopment Framework) 6,
a multi-agent systems platform. We implemented all of our
algorithms in Java JDK 1.5, and performed the experiments
on a dual-processor workstation running Windows XP with
3.00GHz and 2.99GHz Xeon CPUs and 3.00GB RAM.

As already noted, after data splitting, each peer has a
profile vector. Also the simulator assigns each peer a set of
neighbors and delays based on the BRITE topology.

7.3 Performance
Having discussed about the data and the simulator setup

we are in a position to report the experimental results.

7.3.1 Random Sampling and Quantile Estimation
This experiment evaluates the accuracy of random sam-

pling and quantile estimation. We chose three different p
values - 80%, 85% and 90%. In all the three cases, the confi-
dence level q was set to 95%, and the size of the network was
fixed at 100 nodes. According to Equation 1, the number
of samples, denoted by N , necessary to guarantee that the
highest order statistic is within the top (1− p) percentile of
population is given by 14, 19 and 29, respectively. Let Pi be
the community initiator. The population can be defined as
the set of all pairwise scalar products between Pi and all the
other peers. Now, if Pi wants to find similar peers who are in
the top (1−p) quantile of the population, it launches N ran-
dom walks. The terminal peer for each random walk refers
to a sample and Pi computes the private scalar product be-
tween its own vector and the vector owned by the sample.
Pi sorts all the N scalar products and finds the largest one
as the threshold of quantile of order p. Figure 5 shows esti-
mated threshold in the distributed experiment. To compare
the results with centralized sampling, Pi first collects the
pairwise scalar products between itself and all the peers in
the network. Pi then performs a random sampling of size N
and finds the largest scalar product. The threshold found by
this approach is illustrated by the stars in Figure 5. Figure
5 also shows the actual population quantile of order p. As
is evident from these results, the threshold found through
random sampling and order statistics theory is above the
actual population quantile. Therefore any scalar product
greater than this threshold can be recognized as among the
top (1− p) quantile population with high confidence, which
validates our claim in Section 5.1.

The next experiment measures the accuracy of the random
sampling and quantile estimation algorithm with respect to
the number of peers - 100, 200 and 500. In each of these
cases, the quantile of the population to monitor was set at
80%, and the confidence level was fixed to 95%. Figure 6
shows similar results that in all the three cases the average
ordinal thresholds are greater than the actual quantiles of

4DDMT - http://www.umbc.edu/ddm/wiki/software/DDMT/
5LEAP - http://leap.crm-paris.com/
6JADE - http://jade.tilab.com/

0.8 0.85 0.9
135

140

145

150

155

160

165

170

175

180

185

Order of Quantile

E
st

im
at

ed
 a

nd
 A

ct
ua

l Q
ua

nt
ile

 V
al

ue

distributed scenario

centralized scenario
actual quantile value

Figure 5: Estimated and actual quantile value w.r.t.
the order of quantile. The results are an average of
100 independent runs.

100 200 500
0

20

40

60

80

100

120

140

160

180

Number of Peers

E
st

im
at

ed
 a

nd
 A

ct
ua

l Q
ua

nt
ile

 V
al

ue

distributed scenario

centralized scenario
actual quantile value

25

30

35

8

10

12

14

Figure 6: Estimated and actual quantile value w.r.t.
the number of peers for fixed p = 0.8, q = 0.95. The
results are an average of 100 independent runs.

the population. Note that as we increase the size of the
network the scalar product between any two peers decreases
because the original data set is now divided into more par-
titions and hence each profile vector becomes more sparse.

7.3.2 Private Scalar Product Computation
This experiments measures the complexity of private scalar

product protocol in terms of running time. We generated
vectors with size from 500 to 2000. 85% of the vector en-
tries were set to zeros, and the remaining ones took values
uniformly distributed in [0, 100]. We did this because most
peers only visited a small subset of the domains, which made
the profile vectors very sparse. Moreover, the complexity to
encrypt zero is the same as to encrypt any other integers. As
mentioned before, we implemented Paillier’s cryptosystem
in Java JDK 1.5, and conducted the experiments on a dual-
processor workstation running Windows XP with 3.00GHz
and 2.99GHz Xeon CPUs and 3.00GB RAM. We tested the
baseline protocol as well as its optimized version, i.e. pre-

500 1000 1500 2000
0

5

10

15

20

25

30

35

40

45

Vector Size

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

optimized private scalar product
non optimized private scalar product

Figure 7: Time required to compute private scalar
product with varying dimension of the vector. The
results are an average of 10 independent runs.

computing the encryption of 0. Figure 7 shows the running
time to compute a single scalar product of vectors of varying
dimension both with and without the optimization. It can
be seen that there is a great reduction in the running time
with optimization.

Using the private scalar product protocol and order statis-
tics theory, we can compute the threshold for quantile es-
timation. Table 1 presents the running time of threshold
computation with fixed confidence level 95% and varying p.

Quantile p Time (in secs)

0.80 35.04
0.85 50.40
0.90 75.00

Table 1: Time required to compute the threshold
w.r.t. different population quantile.

7.3.3 Community Formation
Once the threshold is detected, the next step is to form

the communities. We experimented with two community
formation schemes. One is without community expansion
and one is with expansion. The size of the network was fixed
to be 100. Table 2 shows the average number of members
found by a community initiator and the running time with
respect to different TTL values. Table 3 presents the results
using the community expansion scheme. The interesting
thing to note here is that peers can find more “similar”
peers without a significant increase in running time. These
times are not considering the network latency, message delay
etc. Note that the secure multiparty protocol is the most
expensive computation and the increase in running time due
to the above mentioned effects in the actual scenario would
be insignificant.

8. CONCLUSIONS
In this paper we have proposed a framework for efficient

community formation in large scale Peer-to-Peer networks.
We use client-side web browsing cache to model peer’s per-

TTL Ave Num of Community Members Time (in secs)

3 3 55.00
4 8 77.50
8 13 173.00

Table 2: Average number of community members
found by the initiator without community expan-
sion.

TTL Ave Num of Community Members Time (in secs)

3 7 59.00
4 12 82.50
8 17 179.00

Table 3: Average number of community members
found by the initiator with community expansion.

sonal interests, and propose an order statistics-based algo-
rithm to build hierarchical communities. To respect peer’s
privacy, we adopt cryptographic protocols to measure sim-
ilarity between peers without revealing their personal pro-
files. We have conducted simulations on our distributed data
mining platform, and the experimental results show that our
algorithm can successfully build similar interests-based com-
munities within reasonable time.

As a future work, we are trying to develop a framework
whereby the need for pre-specification of the peer ontology
is not required. For example, each peer can claim a set of
interests and we can compute the set intersection size as a
similarity index. In this case, no global set of ontology is
required. Further we can explore a secure set intersection
protocol to protect privacy. We are actively working to ex-
tend this work where not only the web domain names are
used for peer’s profile but also the contents of the web pages.
We also plan to run experiments on a real-life peer-to-peer
environment where we can simulate with tens of thousands
of peers using a large-scale data and measure the actual net-
work latency, message overhead, network load and the like.

Acknowledgment
H. Kargupta acknowledges the support from the United
States National Science Foundation CAREER award IIS-
0093353.

9. REFERENCES
[1] A. Agostini and G. Moro. Identification of

communities of peers by trust and reputation. In
Proceedings of the 11th International Conference on
Artifical Intelligence: Methogology, Systems and
Applications (AIMSA’04), volume 3192 of Lecture
Notes in Computer Science, pages 85–95, Varna,
Bulgaria, September 2004. Springer Berlin /
Heidelberg.

[2] J. Al-Muhtadi, R. Campbell, A. Kapadia, M. D.
Mickunas, and S. Yi. Routing through the mist:
Privacy preserving communication in ubiquitous
computing environments. In Proceedings of the 22 nd
International Conference on Distributed Computing
Systems (ICDCS’02), pages 74–83, Vienna, Austria,
June July.

[3] A. Awan, R. A. Ferreira, S. Jagannathan, and
A. Grama. Distributed uniform sampling in

unstructured peer-to-peer networks. In Proceedings of
the 39th Annual Hawaii International Conference on
System Sciences (HICSS’06), volume 9, page 223c,
Kauai, Hawaii, January 2006.

[4] S. Castano and S. Montanelli. Semantic self-formation
of communities of peers. In Proceedings of the ESWC
Workshop on Ontologies in Peer-to-Peer
Communities, Heraklion, Greece, May 2005.

[5] S. Datta, C. Giannella, and H. Kargupta. K-Means
Clustering over a Large, Dynamic Network. In
Proceedings of 2006 SIAM Conference on Data
Mining, Bethesda, MD, April 2006.

[6] H. A. David. Order Statistics. Wiley-Interscience, 2
edition, 1981.

[7] W. Du, Y. S. Han, and S. Chen. Privacy-preserving
multivariate statistical analysis: Linear regression and
classification. In Proceedings of 2004 SIAM
International Conference on Data Mining (SDM’04),
Lake Buena Vista, FL, April 2004.

[8] G. W. Flake, S. Lawrence, C. L. Giles, and F. M.
Coetzee. Self organization and identification of web
communities. IEEE Computer, 35(3):66–71, March
2002.

[9] Freenet. http://freenetproject.org/.

[10] B. Gilburd, A. Schuster, and R. Wolff. k-ttp: a new
privacy model for large-scale distributed
environments. In Proceedings of the tenth ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’04), pages 563–568,
Seattle, WA, 2004.

[11] GNUnet. http://gnunet.org/.

[12] B. Goethals, S. Laur, H. Lipmaa, and T. Mielikäinen.
On private scalar product computation for
privacy-preserving data mining. In Proceedings of the
The 7th Annual International Conference in
Information Security and Cryptology (ICISC 2004),
volume 3506 of Lecture Notes in Computer Science,
Springer-Verlag, pages 104–120, Seoul, Korea,
December 2004.

[13] W. K. Hastings. Monte carlo sampling methods using
markov chains and their application. Biometrika,
57:97–109, 1970.

[14] K. Horowitz and D. Malkhi. Estimating network size
from local information. The Information Processing
Letters Journal, 88(5):237–243, December 2003.

[15] M. Khambatti, K. D. Ryu, and P. Dasgupta. Efficient
discovery of implicitly formed peer-to-peer
communities. International Journal of Parallel and
Distributed Systems and Networks, 5(4):155–164, 2002.

[16] L. Lovász. Random walks on graphs: A survey.
Combinatorics, Paul Erdös is Eighty, 2:1–46, 1993.

[17] A. H. Maslow. Motivation and Personality.
HarperCollins Publishers, 3rd edition, January 1987.

[18] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth,
A. H. Teller, and E. Teller. Equations of state
calculations by fast computing machines. Journal of
Chemical Physics, 21:1087–1092, 1953.

[19] N. Noy. Semantic integration: A survey of
ontology-based approaches. ACM SIGMOD Record,
33(4):65–70, 2004.

[20] P. Paillier. Public-key cryptosystems based on

composite degree residuosity classes. In J. Stern,
editor, Advances in Cryptology - RUROCRYPT’99,
volume 1592 of Lecture Notes in Computer Science,
pages 223–238, 1999.

[21] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A
measurement study of peer-to-peer file sharing
systems. In Proceedings of Multimedia Computing and
Networking (MMCN’02), San Jose, cA, January 2002.

[22] J. P. Scott. Social Network Analysis: A Handbook.
Sage Publications Ltd., 2nd edition, March 2000.

[23] F. Tanudjaja and L. Mui. Persona: A contextualized
and personalized web search. In Proceedings of the
35th Annual Hawaii International Conference on
System Sciences (HICSS’02), volume 3, page 53, Big
Island, Hawaii, 2002.

[24] C. Thomas and G. Fischer. Using agents to
personalize the web. In Proceedings of the 2nd
International Conference on Intelligent User
Interfaces, pages 53–60, Orlando, FL, 1997.

[25] J. Trajkova and S. Gauch. Improving ontology-based
user profiles. In Proceedings of RIAO, pages 380–389,
Vaucluse, France, April 2004.

[26] J. Vaidya, C. Clifton, and M. Zhu. Privacy Preserving
Data Mining, volume 19 of Series: Advances in
Information Security. Springer, 2006.

[27] Y. Wang and J. Vassileva. Trust-based community
formation in peer-to-peer file sharing networks. In
Proceedings IEEE International Conference on Web
Intelligence (WI’04), pages 341–338, Beijing, China,
October 2004.

[28] R. Wolff, K. Bhaduri, and H. Kargupta. Local L2
Thresholding Based Data Mining in Peer-to-Peer
Systems. In Proceedings of 2006 SIAM Conference on
Data Mining, Bethesda, MD, April 2006.

[29] R. Wolff and A. Schuster. Association Rule Mining in
Peer-to-Peer Systems . In Proceedings of the third
IEEE International Conference on Data Mining,
Melbourne, FL, November 2003.

[30] R. Wright and Z. Yang. Privacy-preserving bayesian
network structure computation on distributed
heterogeneous data. In Proceedings of the tenth ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’04), pages 713–718.
ACM Press, 2004.

[31] A. C. Yao. How to generate and exchange secrets. In
Proceedings 27th IEEE Symposium on Foundations of
Computer Science, pages 162–167, 1986.

